A Contribution to Sustainable Development in Vietnamese Hard Coal Mining by Mine Dust Mitigation and Waste Rock Dump Stabilization

L. Rattmann P.N. Martens, T. Katz, I. Özdemir, A. Förster, M. Fuchsschwanz

SDIMI 2013 – Sustainable Development in the Minerals Industry 6th International Conference, 30 June - 3 July 2013 Milos Island, Greece

Research Association Mining and Environment in Vietnam

Institute of Mining Engineering I

Federal Ministry of Education and Research

Introduction (I)

Vietnam, Quang Ninh Province, Ha Long
 Ha Long Bay: UNESCO World Heritage Site

Conflicts of Interest between Tourism and Mining

BAY

Introduction (II)

Structure

RAME Subproject 2a: Waste Rock Dump (WRD) Stabilization and Rehabilitation

→ Focus on Mechanical WRD Stability

→ Slope Stability

→ Erosion

→ Subsidence

RAME Subproject 4a: Dust Mitigation and Monitoring

- → Dust Sources
 - → Source Measurements
 - Emission Factors
- → Mine Dust Control Approach
 - → Mitigation Methods
 - → Control Factors & Modelling

Existing WRD

- → Heights > 300 m
- → Single Slope Heights > 150 m
- → No Vegetation
 - → Stability Problems

Investigation

- → Material Parameters
- → Erosion Modelling
- → Test Areas
 - Erosion Assessment
 - → Subsidence Monitoring
- Stabilization Measures

Dump Stability: Erosion Monitoring (I)

Dump Stability: Erosion Monitoring (II)

November 2012: 4.63 m³

April 2012: 2.82 m³

	Aspect	Cost	Slope Stability	Erosion	Land- scaping	Area required	Effects on Production	Applic- ability	
	Weight	25%	10%	15%	5%	10%	15%	20%	Total
1	Height Reduction		++	++	+		0		-0,55
2	Slope Angle Reduction	-	++	+	+	-	0	+	0,25
3	Berm Construction	0	++	+	++	-	-	++	0,6
4	Vegetation	-	0	++	++	0	0	+	0,35
5	Surface Water Control	-	+	++	0	0	+	+	0,5
6	Seepage Water Control		+	0	0	0	0	-	-0,6
7	Soil Nails		++	+	-	+	0		-0,5
8	Support Structures		+	0	-	+	0		-0,75

Ongoing Dump Stabilization at Cẩm Phả

Dump Stability - Slopes

Dust Emission Sources at NBCC Mining Area

Real-time Emission Measurements

- Emission Concentration and Wind Condition Measurements
- → Measurements of Parameters influencing Dust Emission

Dust Emission Factors – Contribution to Dust Generation

Mining	Activity	Emission Factor	Contribution to the Dust Generation (%)	
Coal Production		various	11.24	
	Drilling (case 1)	28.17 (g/m)		
	Drilling (case 2)	320.67 (g/m)	0.32	
	Drilling (case 3)	1,279.80 (g/m)		
	Blasting	0.53 (g/t)	0.06	
	Loading (case 1)	3.93 (g/t)		
Overburden	Loading (case 2)	3.78 (g/t)	0.58	
Handling	Loading (case 3)	4.70 (g/t)		
	Haulage (case 1)	880 (g/km*truck)		
	Haulage (case 2)	524 (g/km*truck)	53.87	
	Haulage (case 3)	1,124 (g/km*truck)		
	Haulage (case 4)	392 (g/km*truck)		
	Dumping	0.225 (g/t)	0.04	
Wind Erosion		0.198 (g/m²*hr)	33.80	

Dust Mitigation Methods & Dust Dispersion Modelling

Mining Activity		Suggested Dust Mitigation Method	Dust Reduction Potential [%]	Concentrations of $PM_{2.5}$ Time 21:00 16 Nov 2011 ; Wind speed=2.0 m/s
	Drilling	Wet Drilling	79	8000
	Blasting	-	-	
	Loading	Wetting Material	48	E 6000
Overburden Handling		Wetting working Surface	9	5000 5000 5000 10 ⁻⁶
	Haulage	Water Spraying	70	4000 - 2 OP14 OP11 - 10 ⁻⁷
	Dumping	Reducing Dumping Height	57	
	Dumping	Wetting Working Surface	11	X, [m]

Dump Stabilization

- → Stabilization is important for all further Rehabilitation Measures
- → Change of Morphology is the cheapest and most effective Measure
- → Surface Drainage Measures and Vegetation help to increase Erosion

Dust Mitigation

- Site-specific Mine Dust Emission and Reduction Factors required for Identification of Mine Dust Problem and corresponding control Options
- Developed Mitigation Methods provide cost-effective Dust Control at NBCC Mine Site

Results are implemented by vietnamese Project Partners!

Thank you for your Attention!

Dr. Ludger Rattmann BBK I, Deputy Head Tel. +49 241 80-95678 E-Mail: rattmann@bbk1.rwth-aachen.de

Institute of Mining Engineering I

Institut für Bergbaukunde I (BBK I)

Prof. Per Nicolai Martens

Wuellnerstr. 2 52062 Aachen Germany

 Tel.
 +49 241 80-95667

 Fax.
 +49 241 80-92272

 E-Mail:
 bbk1@bbk1.rwth-aachen.de

 Web:
 http://www.bbk1.rwth-aachen.de/en

Research Association Mining and Environment in Vietnam

Web: http://www.rame.vn

