Investigation of the effect of soil replacement and fertilization on the improvement of calcareous mining spoils productivity in mountain Ghiena-Central Greece

G. Brofas, G. Mantakas and C. Varelides Institute of Mediterranean Forest Ecosystems and Forest Products Technology

Ch. Mermiris S & B Industrial Minerals, S.A.

Site description

Ghiona mountain - Central Greece

- •Altitude: 850 m
- •Piles of calcareous spoils derived from bauxite mining
- •Bioclimatic zones of the deciduous oaks and Abies cephalonica
- •Climate mild Mediterranean with cold winters
- •Annual rainfall: 1200 mm

Experimental Design

- Fully Randomized Blocks
- **3** Replications
- 4 Treatments:
- A=control
- B= 40kg/ha NPK: 12-8-16 (MgO+B+Fe+Zn) Complesal supra
- **C**= 40kg/ha NPK: 11-15-15
- **D**= 40kg/ha NPK: 12-12-12+15(S) + 10% organic matter

Experimental Design

- On bare spoils and
- •On spoils **covered with a layer** of soil (fine earth) about 15 cm deep
- •Fertilization, 20kg/ha, twice

i)on 04.11.2010 &

ii)on 30.03.2011

- Size plot 2X2=4 m²
- 24 plots

Experimental Design

Experimental plots in Mt. Ghiona

Experimental plots in Mt. Ghiona

Establishment

Autumn 2010 (4 November)

Seed mixture			
Species	Participation (%)	Germination rates	
Festuca rubra	10	16.67%	
Medicago sativa	20	85.83%	
Sanguisorba minor	15	100.00%	
Phacelia tanacetifolia	15	69.78%	
Onobrychis sativa	25	62.92%	
Lolium rigidum	10	96.25%	
Festuca ovina	5	35.00%	

Results for physical and chemical properties

pН **N** (%) **P** (mg kg-1) **Mg2+** (cmolc kg-1) **K+** (cmolc kg-1) Ca2+ (cmolc kg-1) **Clay** (%) **Silt** (%) **Sand** (%)

Spoil material 7.53 0.012 1.2 0.66 0.05 35.11 10 4 86

Fine earth 6.78 0.017 1.4 4.7 0.11 26.83 46 32 22

Results

Biomass Production

Mean Value per plot

Least Significant Difference (LSD) for the comparison of the means

Mean biomass production Kg/ha

Treatment s	Spoil	Spoil + fine earth
Α	201.33 <mark>a</mark>	533.67 <mark>b</mark>
В	1,071.67 <mark>e</mark>	1,392.33 <mark>de</mark>
С	897.67 <mark>e</mark>	1,426.67 <mark>d</mark>
D	780.00 <mark>e</mark>	1,533.33 <mark>de</mark>

Results

Dry biomass

All fertilization treatments > control,

• No differences statistically significant

between the fertilized treatments

•Total dry biomass 65.6% higher in the treatment with soil cover.

- •Difference between:
 - ı) control &

II) fertilized plots with NPK with & without soil cover

Discussion

Soil Replacement significantly increased (X 2.5) biomass production but not reached a satisfactory level

The un satisfactory production seems to be related to the **similarity for the major nutrients** between the **soil used** and to those of **spoil materials**

The improvement reached is due to

best texture and

•the lack or minor presence of skeletal material (>2mm)

OTHER REASONS

- topsoil is minimal or non-existent
- •large amounts of B horizon soil
- •crumbly bedrock

Discussion

Fertilization significantly increased the **Production of Dry Biomass**

•very low level of main nutrient elements with and without soil cover

•that mineral fertilization (**N**, **P**) of **mined land** substantially **increases** plant production & promotes herbaceous vegetation establishment

•The **lack** of statistically significant **differences** between the different fertilizers used it appears that differences in their composition are **not sufficient to influence** the production of dry biomass.

Composition of the vegetation

Lolium rigidum survive & growth

- -all other species failure-perhaps due to
 - i) <u>delayed sowing</u> (04-11-2009) &

ii) <u>low temperatures</u> during and after germination, which destroyed the germinated seedlings of the other species.

Sanguisorba minor scattered appearance

Why Lolium rigidum escaped damage?

- in a more advanced stage of growth and withstood
 better the low temperatures
- to its possible **better resistance** in low temperatures

Annual plants have faster germination & better growth rates **than perennial**

Hypothesis for the failed species

 Grains even with high germination in laboratory conditions may produce inferior or very inferior results in natural conditions

•Seeds of various plant species **require different germination conditions** that may be not suited for other species in a period

•Some leguminous species are harmed by the **fertilizer added simultaneously** with their sowing

Conclusions

- The used soil improves the conditions of the mentioned spoil materials, but by itself cannot ensure adequate vegetation establishment
- Fertilization is essential for the vegetation establishment and satisfactory growth
- Regarding the quantity and repetition of fertilisation further investigation is needed as appropriate to particular site conditions