BUILDING A NEW ASSESSMENT TOOL FOR POTENTIAL RARE EARTH UNDERGROUND MINING PROJECTS

SDIMI 2015
Vancouver, Canada

George BARAKOS
Helmut MISCHO
Scope of Research

Special Evaluations in Rare Earth Mining

Traditional Evaluation Methods

REE-Mining Industry Specific Criteria

Numerical Methods & Techniques in the Assessment Tool

Structure of the Assessment Tool for Rare Earth Underground Mining Projects
Special Evaluations in Rare Earth Mining

What makes rare earth mining so special?

- Fragile market
- The Balance Problem
- Legislation
- Difficulties in processing
- Radioactivity
- Tailings

- Environmental issues
- Lack of proper knowledge & experience
- Social arguments

(Source: www.adn.com)
Traditional Evaluation Methods

- Boshkov & Wright (1973)
- Morrison (1976)
- Laubscher (1981)
- Nicholas (1981)
- Hartman (1987)
- UBC (1995)
- ...
- AHP
- ANP
- PROMETHEE
- Fuzzy logic techniques
- Trapezoidal fuzzy numbers

What determines the type of mining?

Lower Cost
Maximum Profit

Rock Mass Properties
Shape, Geometry & Position of Deposit
REE-Mining Industry Specific Criteria

The triple-bottom-line (TBL)
The three pillars of sustainability

- Geological
- Technical
- ...
- Economic
- Environmental
- Sociopolitical

Need for a detailed evaluation tool focused on the viability of REE projects
REE-Mining Industry Specific Criteria

Evaluation Criteria for REE mining

Spatial characteristics of deposit
- Size
- Shape
- Attitude
- Depth
- Regularity of ore boundaries
- Existence of previous mining

Geologic & hydrologic conditions
- Mineralogy, petrography
- Chemical composition
- Deposit structure
- Planes of weakness
- Uniformity of grade
- Alternation, weathered zones
- Existence & mobility of strata gases
- Occurrence of radioactivity

Geotechnical properties
- Elastic properties
- Plastic or viscoelastic behavior
- State of stress
- Stability & rock mass rating
- Other physical properties

Technological factors
- Recovery
- Dilution
- Flexibility of method to changing
- Selectivity of method
- Concentration or dispersion
- Ability to mechanize & automate
- Capital & labor costs

Health & Safety
- Minimization of dust production
- Mobilization of radiation
- Atmospheric control & ventilation

Environmental concerns
- Ground control
- Subsidence or caving effects
- Waste disposal & backfilling
- Comparative safety conditions
- Water treatment

Sociopolitical considerations
- Intellectual capital
- Legislation & environmental regulations
- Processing plant licenses
- Political stability
- Social arguments
- Availability of workforce

Economic considerations
- Reserves
- Production rate
- Mine life
- Productivity
- Comparative mining costs
- Comparative capital costs
- Balance of REEs
- Current & future prices predictions
- By products

(Source: Barakos & Mischo, 2015; modified after Hartman & Mutmansky, 2002)
Numerical Methods & Techniques in the Assessment Tool

- Analytical Hierarchical Process (AHP)

- Numerical approach for evaluation (Nicholas method)

- Sensitivity analysis model
The Analytical Hierarchical Process

- Multi-criteria decision process
- Subdivision of problems in an hierarchical form
- Pair-wise comparison of components
- Prioritization of criteria by setting weight factors on them

<table>
<thead>
<tr>
<th>Relative Intensity</th>
<th>Definition</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Of equal value</td>
<td>Two elements are of equal value</td>
</tr>
<tr>
<td>3</td>
<td>Slightly more</td>
<td>Experience slightly favors one element over another</td>
</tr>
<tr>
<td></td>
<td>value</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Essential or</td>
<td>Experience strongly favors one element over another</td>
</tr>
<tr>
<td></td>
<td>strong value</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Very strong</td>
<td>An element is strongly favored and its dominance is demonstrated in practice</td>
</tr>
<tr>
<td></td>
<td>value</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Extreme value</td>
<td>The evidence favoring one over another is of the highest order of affirmation</td>
</tr>
<tr>
<td>2, 4, 6, 8</td>
<td>Intermediate</td>
<td>When compromise is needed</td>
</tr>
<tr>
<td></td>
<td>values</td>
<td></td>
</tr>
</tbody>
</table>
The Analytical Hierarchical Process

Pair-wise comparison over n criteria

$$A = \begin{bmatrix} a_{11} & a_{12} & \ldots & a_{1n} \\ a_{21} & a_{22} & \ldots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \ldots & a_{nn} \end{bmatrix}, \quad a_{ii} = 1, \quad a_{ji} = \frac{1}{a_{ij}}, a_{ij} \neq 0$$

Computing the vector of weights

$$a_{ij} = \frac{a_{ij}}{\sum_{i=1}^{n} a_{ij}} \quad \Rightarrow \quad w_i = \frac{\sum_{i=1}^{n} a_{ij}}{n}$$

Consistency of comparisons

$$CI = \frac{\lambda_{\text{max}} - n}{(n-1)}$$

$$CR = \frac{CI}{RI}$$
Numerical Approach for Evaluation (Based on Nicholas)

• Ranking values for the suitability of a mining method to each criterion

• Intermediate values can be given for greater accuracy

• Many parameters are already quantified in classification schemes

• Evaluation of non-quantified criteria is based on experience and past cases

<table>
<thead>
<tr>
<th>Ranking</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strongly preferred</td>
<td>5</td>
</tr>
<tr>
<td>Slightly preferred</td>
<td>3-4</td>
</tr>
<tr>
<td>Probable</td>
<td>1-2</td>
</tr>
<tr>
<td>Unlikely</td>
<td>0</td>
</tr>
<tr>
<td>Eliminated</td>
<td>-49</td>
</tr>
</tbody>
</table>

(Source: modified after Nicholas, 1981)
Numerical Approach for Evaluation (Based on Nicholas)

Definition of deposit geometry and grade distribution

<table>
<thead>
<tr>
<th>General shape/width</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equidimensional</td>
<td>All dimensions are on same order of magnitude.</td>
</tr>
<tr>
<td>Platy-tabular</td>
<td>Two dimensions are many times the thickness, which does not usually exceed 100 m.</td>
</tr>
<tr>
<td>Irregular</td>
<td>Dimensions vary over short distances.</td>
</tr>
</tbody>
</table>

Ore thickness

<table>
<thead>
<tr>
<th>Type</th>
<th>Thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Narrow</td>
<td><10 m</td>
</tr>
<tr>
<td>Intermediate</td>
<td>10–30 m</td>
</tr>
<tr>
<td>Thick</td>
<td>30–100 m</td>
</tr>
<tr>
<td>Very thick</td>
<td>>100 m</td>
</tr>
</tbody>
</table>

Plunge

<table>
<thead>
<tr>
<th>Type</th>
<th>Angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flat</td>
<td><20°</td>
</tr>
<tr>
<td>Intermediate</td>
<td>20°–55°</td>
</tr>
<tr>
<td>Steep</td>
<td>>55°</td>
</tr>
</tbody>
</table>

Depth below surface

<table>
<thead>
<tr>
<th>Type</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Provide actual depth.</td>
</tr>
</tbody>
</table>

Grade distribution

<table>
<thead>
<tr>
<th>Type</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uniform</td>
<td>Grade at any point in deposit does not vary significantly from mean grade for that deposit.</td>
</tr>
<tr>
<td>Gradational</td>
<td>Grade values have zonal characteristics, and the grades change gradually from one to another.</td>
</tr>
<tr>
<td>Erratic</td>
<td>Grade values change radically over short distances and do not exhibit any discernible pattern in their changes.</td>
</tr>
</tbody>
</table>

Rock mechanics characteristics

Rock Substance Strength (uniaxial strength/overburden pressure)

<table>
<thead>
<tr>
<th>Strength</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weak</td>
<td><8</td>
</tr>
<tr>
<td>Moderate</td>
<td>8–15</td>
</tr>
<tr>
<td>Strong</td>
<td>>15</td>
</tr>
</tbody>
</table>

Fracture Frequency

<table>
<thead>
<tr>
<th>Fracture Frequency</th>
<th>No. of Fractures/m</th>
<th>% RQD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very close</td>
<td>>16</td>
<td>0–20</td>
</tr>
<tr>
<td>Close</td>
<td>10–16</td>
<td>20–40</td>
</tr>
<tr>
<td>Wide</td>
<td>3–10</td>
<td>40–70</td>
</tr>
<tr>
<td>Very wide</td>
<td><3</td>
<td>70–100</td>
</tr>
</tbody>
</table>

Fracture Shear Strength

<table>
<thead>
<tr>
<th>Strength</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weak</td>
<td>Clean joint with smooth surface or fill with material with strength less than rock substance strength</td>
</tr>
<tr>
<td>Moderate</td>
<td>Clean joint with rough surface</td>
</tr>
<tr>
<td>Strong</td>
<td>Joint filled with material that is equal to or stronger than rock substance strength</td>
</tr>
</tbody>
</table>

(Source: Nicholas, 1992)
The Sensitivity Analysis Model

- “Subjective” decisions in the selection process
- Most critical criteria have the highest weight factors (?)

Sensitivity Analysis Model on Weights

- Smallest change on weights that can influence the ranking of mining methods

Variation of one single value at a time

Change two or more parameters simultaneously
Structure of the Assessment Tool

- Quantification and assessment of all possible factors
- Critical ability using quantified data and experience
- AHP and weight factors
- Re-evaluation loops
- Sensitivity Analysis
Classification of Mining Methods

<table>
<thead>
<tr>
<th>Locale</th>
<th>Class</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface</td>
<td>Mechanical</td>
<td>Open pit mining</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Quarrying</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Open cast (strip) mining</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Auger mining</td>
</tr>
<tr>
<td></td>
<td>Aqueous</td>
<td>Hydraulicking</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dredging</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Borehole mining</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Leaching</td>
</tr>
<tr>
<td>Underground</td>
<td>Unsupported</td>
<td>Room-and-pillar mining</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stope-and-pillar mining</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Shrinkage stoping</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sublevel stoping</td>
</tr>
<tr>
<td></td>
<td>Supported</td>
<td>Cut-and-fill stoping</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stull stoping</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Square-set stoping</td>
</tr>
<tr>
<td></td>
<td>Caving</td>
<td>Longwall mining</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sublevel caving</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Block caving</td>
</tr>
</tbody>
</table>

(Source: modified after Hartman & Mutmansky, 2002)
Structure of the Assessment Tool

1st Evaluation Stage

1st Stage

Start of evaluation

- Set the categories and criteria

Evaluation of some basic criteria:

- Geographic conditions (location, social)
- Infrastructure
- Mineralogy, grade, REE-type
- Metallurgical tests, recovery
- Legislation, licenses

Ensure that the REE project has potentials

2nd Stage

Early evaluation stage of criteria
- In this stage we examine the criteria in the first 3 categories
 i) Spatial characteristics of deposit
 ii) Geologic-hydrologic conditions
 iii) Geotechnical properties
- AHP for weighted criteria
- Ranking of mining methods
- Surface/underground mining
- Elimination of unsuitable mining methods to reduce
- Scores of qualifying methods are transferred to next stage

3rd Stage

Main evaluation stage of criteria
- In this stage we examine the criteria in the categories 4-8
 iv) Economic considerations
 v) Technological factors
 vi) Environmental concerns
 vii) Sociopolitical considerations
 viii) Health & safety concerns
- AHP for weighted criteria
- Ranking of mining methods
- Sensitivity analysis for criteria

4th Stage

Conclude to 2-3 most suitable methods;
- Prefeasibility studies for all environmental studies of them

Final decision on the method
- Feasibility study
- Decision on investment

NEPA and permitting
Financing

END OF EVALUATION
START OF PROJECT
Structure of the Assessment Tool

2nd Evaluation Stage

2nd Stage

Early evaluation of criteria

- Examination of the criteria in the first 3 categories

i) spatial characteristics of deposit

ii) geologic-hydrologic conditions

iii) geotechnical properties

-AHP for weighted criteria

-Ranking of mining methods

-Surface/underground mining

-Elimination of unsuitable mining methods

-Scores of qualifying methods are transferred to next stage

3rd Stage

Main evaluation stage of criteria

- In this stage we examine the criteria in the categories 4-8

iv) Economic considerations

v) Technological factors

vi) Environmental concerns

vii) Sociopolitical considerations

viii) Health & safety concerns

-AHP for weighted criteria

-Ranking of mining methods

-sensitivity analysis for criteria

4th Stage

Conclude to 2-3 most suitable methods;

-Prefeasibility studies for all environmental studies of them

Final decision on the method

-Feasibility study

-Decision on investment

Yes

No

NEPA and permitting

Financing

END OF EVALUATION

START OF PROJECT
Structure of the Assessment Tool
3rd Evaluation Stage

1st Stage
START OF EVALUATION
- Set the categories and criteria
Evaluation of some basic criteria:
- Geographic conditions (location, social)
- Infrastructure
- Mineralogy, grade, REE-type
- Metallurgical tests, recovery
- Legislation, licenses

Ensure that the REE project has potentials

2nd Stage
Early evaluation stage of criteria
- In this stage we examine the criteria in the first 3 categories
 i) spatial characteristics of deposit
 ii) geologic-hydrologic conditions
 iii) geotechnical properties
- AHP for weighted criteria
- Ranking of mining methods
- Surface/underground mining
- Elimination of unsuitable mining methods to reduce
- Scores of qualifying methods are transferred to next stage

3rd Stage
Main evaluation stage of criteria

- Examination of criteria in the categories 4-8
 iv) Economic considerations
 v) Technological factors
 vi) Environmental concerns
 vii) Sociopolitical considerations
 viii) Health & Safety concerns
- AHP for weighted criteria
- Ranking of mining methods
- Sensitivity analysis for criteria

4th Stage
Conclude to 2-3 most suitable methods;
- Prefeasibility studies for all environmental studies of them
Final decision on the method
- Feasibility study
- Decision on investment
- NEPA and permitting
Financing
END OF EVALUATION
START OF PROJECT
Structure of the Assessment Tool

4th Evaluation Stage

1st Stage
START OF EVALUATION
- Set the categories and criteria
Evaluation of some basic criteria:
- Geographic conditions (location, social)
- Infrastructure
- Mineralogy, grade, REE-type
- Metallurgical tests, recovery
- Legislation, licenses

Ensure that the REE project has potentials

2nd Stage
Early evaluation stage of criteria
- In this stage we examine the criteria in the first 3 categories
 i) spatial characteristics of deposit
 ii) geologic-hydrologic conditions
 iii) geotechnical properties
- AHP for weighted criteria
- Ranking of mining methods
- Surface/underground mining
- Elimination of unsuitable mining methods to reduce
- Scores of qualifying methods are transferred to next stage

3rd Stage
Main evaluation stage of criteria
- In this stage we examine the criteria in the categories 4-8
 iv) Economic considerations
 v) Technological factors
 vi) Environmental concerns
 vii) Sociopolitical considerations
 viii) Health & safety concerns
- AHP for weighted criteria
- Ranking of mining methods
- Sensitivity analysis for criteria

4th Stage
Final evaluation stage
Conclude to 2-3 most suitable methods;
- Prefeasibility studies for all
- Environmental studies of them

Final decision on the method
- Feasibility study
- Decision on investment

Yes
Ne

NEPA and permitting
Financing

END OF EVALUATION
START OF PROJECT
Conclusions and Perspectives

• An approach to create an integrated evaluation process
• The tool is applicable to other kind of deposits

• Weight factors calculated with Analytical Hierarchical Process
• Ranking of mining methods with the “Nicholas” ranking system

• No active REE underground mines to derive data, knowledge, experience
• Next step is to investigate interesting REE potential projects

• The goal is to check the functionality and consistence of the tool
• Optimization of evaluation process
• Combination of the theoretical tool with mine planning design software
Conclusions and Perspectives

• An approach to create an integrated evaluation process
• The tool is applicable to other kind of deposits

• Weight factors calculated with Analytical Hierarchical Process
• Ranking of mining methods with the “Nicholas” ranking system

• No active REE underground mines to derive data, knowledge, experience
• Next step is to investigate interesting REE potential projects

• The goal is to check the functionality and consistence of the tool
• Optimization of evaluation process
• Combination of the theoretical tool with mine planning design software
Conclusions and Perspectives

• An approach to create an integrated evaluation process
• The tool is applicable to other kind of deposits

• Weight factors calculated with Analytical Hierarchical Process
• Ranking of mining methods with the “Nicholas” ranking system

• No active REE underground mines to derive data, knowledge, experience
• Next step is to investigate interesting REE potential projects

• The goal is to check the functionality and consistence of the tool
• Optimization of evaluation process
• Combination of the theoretical tool with mine planning design software
Conclusions and Perspectives

• An approach to create an integrated evaluation process
• The tool is applicable to other kind of deposits

• Weight factors calculated with Analytical Hierarchical Process
• Ranking of mining methods with the “Nicholas” ranking system

• No active REE underground mines to derive data, knowledge, experience
• Next step is to investigate interesting REE potential projects

• The goal is to check the functionality and consistence of the tool
• Optimization of evaluation process
• Combination of the theoretical tool with mine planning design software
THANK YOU FOR YOUR ATTENTION

g.barakos@hzdr.de
www.hzdr.de/hif