

Sustainable use of resources into fired clay bricks

<u>P. Samaras¹</u>, V. Karayannis², X. Spiliotis³, K. Ntampegliotis³, G. Papapolymerou³

¹Alexander Technological Education Institution of Thessaloniki, Thessaloniki, Greece

²Technological Education Institution of West Macedonia, Kozani, Greece

³Technological Education Institution of Thessalia, Larissa, Greece

Introduction

<u>Fly ashes</u>:

Produced in huge amounts from lignite/coal combustion in thermal power plants

- <u>Utilization of fly ash in construction applications</u>:
 - Expected to increase
 - Noticeable research focuses on **ash addition into clayey mixtures** for manufacturing conventional fired bricks and tiles and other construction products
- Electric arc furnace technology:

Increasing rates in the steel-making industry over the last decades resulting in the production of **large quantities of solid residues**, including **steel dust (electric arc furnace dust)**, one of the major by-products

- Recycling of steel dust:
 - Also very important
 - Incorporation of steel dust in ceramic clay bodies is being examined
- Recently, the <u>synergy of various mixtures of several industrial solid wastes</u> containing silica, alumina and lime as the predominant oxides towards the development of **value-added construction materials**, including ceramics, glass-ceramics & cement-based materials, is under consideration
- <u>Limited data are reported</u> regarding **synergistic usage** of fly ash with steel-industry powder residues into fired clay bricks
- <u>Appropriate mixture compositions</u> of these by-products can be **attractive starting materials** for ceramics development

Current study

Raw materials:

Innovative synergistic utilization

of lignite fly ash along with steel-making dust into clay-based bricks

- These by-products contain several valuable oxides
 - \rightarrow they can be examined as secondary materials in ceramics manufacturing
- **Composition differences** between them provide a stimulating research field
- <u>Methods</u>:

Plastic **extrusion** and **firing** for fabrication of rectangular brick specimens

- <u>Characterization</u>
 - Microstructure: SEM-EDX analysis
 - Properties:
 - * Total volume shrinkage
 - * Water absorption capacity & Open porosity
 - * Thermal conductivity
 - * Bending strength
- <u>Aims</u>:
 - **Synergistic valorization** of these industrial by-products to partially alleviate **waste management** problems
 - **Substitution** for **huge quantities** of **clayey minerals** that are demanded for the production of considerable amounts of fired bricks
 - The **low cost** of these industrial residues and even **possible energy savings** upon clay/waste mixtures firing should also be taken into consideration

Raw materials

Base raw materials:

Clays typically used by the ceramic industry

Industrial	powdery	by-products:
------------	---------	--------------

- Fly ash from lignite power station (FA)
 High-Ca (CaO>30%wt.)
 → Class-C FA (ASTM)
- <u>Steel-making dust (EAFD)</u>

 Solid by-product from gas treatment of steel-industry electric arc furnace
 Main oxides: FeO and ZnO (over 50 wt. % of the dust)

Chemical	composition	(%wt.)	of FA
----------	-------------	--------	-------

Composition	(%wt.)
SiO ₂	30.16
Fe_2O_3	5.10
Al_2O_3	14.93
CaO	34.99
MgO	2.69
SO_3	6.28
Na ₂ O	1.01
K ₂ O	0.40

Main components (% wt.) of EAFD		
Component	(%wt.)	
FeO	37.7	
ZnO	22.0	
PbO	12.0	
CaO	7.7	
Na ₂ O	5.1	
SiO_2	3.7	
MnO	3.2	
MgO	2.2	
K_2O	2.1	
SO_3	1.4	
Cl	1.3	
Al_2O_3	0.7	

Preparation of specimens:

Pilot-plant simulation of industrial brick manufacturing

Extrusion of specimens

As-extruded green specimens

Formation of plastic mass

Sintering - Final consolidation

of the extruded specimens

- a) Drying in air for 24h
- b) Drying in oven at 105°C for 48h
- c) Firing in programmable furnace up to 850, 950, 1050, 1150 °C

Testing of specimens

<u>Total Volume Shrinkage</u>

 $V_s = 100(V_w - V_f)/V_w$ V_s : specimen volume shrinkage (%) V_w : wet specimen volume V_f : fired specimen volume

<u>Thermal conductivity</u> <u>coefficient</u> (k)

Testing at 25°C using the "guarded heat flow meter" method (Anter Unitherm Model 2022)

Water Absorption Capacity & Open Porosity

- Immersion in water (25-30°C) for 24h
- WA (%) = $100(W_{wet}-W_{dry})/W_{dry}$
- **OP (%)** = $100(W_{wet}-W_{dry})/\rho V$
 - W: specimen weight V: specimen volume p: water density

<u>3-point Bending Strength</u>

- 30 test specimens
- Modulus of Rupture (M.O.R.):

M.O.R. = (3PL)/(2BW²)

- P: fracture load (MN),
- L: half of the span between the bend ring supports (m)
- B: specimen width (m)
- W: specimen height (thickness) (m)

Chemical elemental analysis by SEM-EDX

Element mapping of 5+5(FA+EAFD)%wt. content clay bricks fired at 1050°C

Effect of the addition of industrial powdery by-products

Effect of the %wt. addition of FA and/or EAFD in the clay mixture on the thermal conductivity (k) & the bending strength (MOR) of the bricks (T_{sint}=1050°C)

- **EAFD**: MOR & $k \approx$ independent of %wt.
- **FA**: %wt. $\uparrow \rightarrow MOR \& k \downarrow$
- **FA+EAFD**(5+5=10%wt.): Intermediate MOR & k values

Effect of firing temperature

SEM micrographs of 5+5(FA+EAFD)%wt. content clay bricks fired at **850** (a), **950** (b), **1050** (c) & **1150** °C (d)

Effect of firing temperature

Volume shrinkage, open porosity, bending strength & thermal conductivity (k) of 5+5(FA+EAFD)%wt. content clay bricks fired at **850** (a), **950** (b), **1050** (c) & **1150** °C (d)

- The synergistic addition of power station fly ash along with steel-making dust in a suitable combination (5+5 %wt.) into clay minerals for bricks development is successfully achieved towards sustainable use of material & energy resources.
- By appropriately adjusting the additive mixture composition, the brick properties can be predicted and tailored in order to meet the needs for specific ceramic applications.
- The **influence** of the **firing temperature**, especially at **1150°C**, on the properties of the sintered ceramic bodies is emphasized.
- Carbon footprint evaluation of the firing process is currently underway, focusing on possible CO₂ emission reductions.

This research has been co-financed:

by the European Union (European Social Fund – ESF)

and Greek national funds

through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF)

- Research Funding Program: **ARCHIMEDES III**. Investing in knowledge society through the European Social Fund.