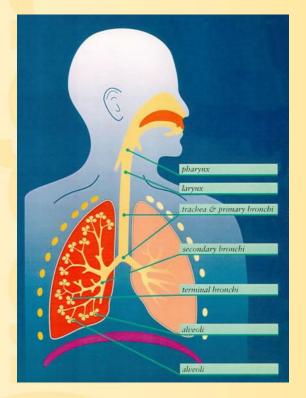
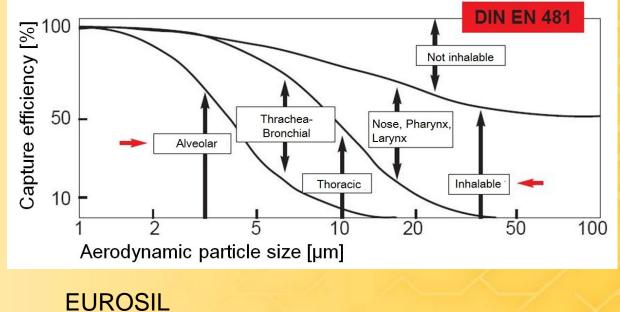
Oregon IECH **Development of a Mathematical Model for Particle-Droplet Interaction for Dust Control** John-Glen Swanson **Cristina Negoita** SDIMI 2015 - Vancouver

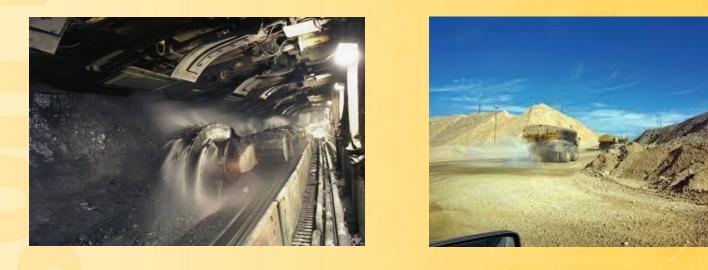

- Introduction
- Problem description
- Mathematical basis for model
- Development of model
- Discussion of preliminary results
- Conclusions / Future Work

Introduction


- Significance of dust control for sustainable development
 - The health dangers with respect to air quality have been known for over 500 years.
 - Protecting health of mine workers
 - Protecting health/quality of life of surrounding community
 - Improving reputation of mining company

Dust Fractions

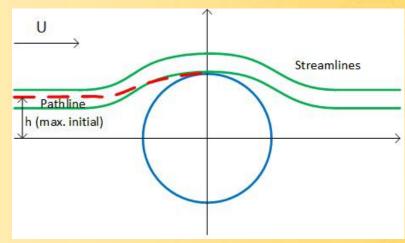
Oregon TECH


Dust – Mining

- The major health concerns with regards to respirable dust in mining are:
 - Coal workers' pneumoconiosis
 - Silicosis
- Dust originates from:
 - Development
 - Extraction
 - Conveying and Hauling

Sept. 2007 54 yr old miner

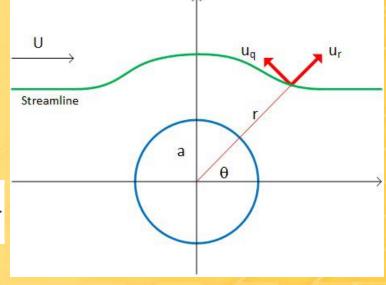
Water Sprays Systems for Dust Control


SDIMI 2015 - Vancouver

Basics of Particle-Droplet Interaction

- Dust particles
 - Particle size distribution
 - Concentration
- Water droplets
 - Droplet size distribution
 - Flow rate
- Interaction
 - Relative velocity

- Assumptions
 - Dust particles entrained in uniform air flow
 - Water droplet stationary
 - Low Reynolds Number / Stokes Flow
 - Drag Force is critical



Mathematical Basis for Model

Streamlines

$$\psi = Ur^{2} \sin^{2} \theta \left\{ \frac{1}{2} - \frac{3a}{4r} + \frac{a^{3}}{4r^{3}} \right\}$$
$$u_{r} = \frac{1}{r^{2} \sin \theta} \frac{\partial \psi}{\partial \theta} = U \cos \theta \left\{ 1 - \frac{3a}{2r} + \frac{a^{3}}{2r^{3}} \right\}$$
$$u_{\theta} = -\frac{1}{r \sin \theta} \frac{\partial \psi}{\partial r} = -U \sin \theta \left\{ 1 - \frac{3a}{4r} - \frac{a^{3}}{4r^{3}} \right\}$$

Drag Force

Development of Model: Parameters

Factor	Variable	Range
Dust Particle Size	R _p (radius)	0.25 – 5 μm
Dust particle density	D _p	1 – 3 t/m ³
Water droplet size	R _d (radius)	5 – 50 μm
Uniform of fluid	U	1 – 6 m/s
Mass of particle	m	$D_{p} * (4\pi R_{p}^{3}/3)$
Velocity of fluid at point	u _f	vector
Starting distance of particle	h	0.1 m
Time	t	0 – 0.02 s
Velocity of particle	u	vector
Density of fluid	d _f	1.184 kg/m ³
Kinematic viscosity of fluid	Nu	1.562 x 10 ⁻³ m ² /s

SDIMI 2015 - Vancouver

Development of Model: Physics

Newton's second law for the particle gives

the sum of forces acting on the particle equals the mass of the particle times its acceleration or

$F_D = ma$

Development of Model: Initial Value Problem

 Initial value problem (IVP) for the velocity of the dust particle u(t):

 $m\mathbf{u}' = 6\pi R_p (\mathbf{u}_f - \mathbf{u})$, with \mathbf{u} as time dependent velocity of particle;

 $u(0) = u_{f}$

SDIMI 2015 - Vancouver

Dependencies in the IVP

Note that the fluid velocity vector u_f = <ur, u_θ> changes implicitly and *nonlinearly* with respect to *time* through its dependencies on r = r(t) and θ = θ(t):

$$u_r = \frac{1}{r^2 \sin \theta} \frac{\partial \psi}{\partial \theta} = U \cos \theta \left\{ 1 - \frac{3a}{2r} + \frac{a^3}{2r^3} \right\}$$

$$u_{\theta} = -\frac{1}{r\sin\theta} \frac{\partial\psi}{\partial r} = -U\sin\theta \left\{ 1 - \frac{3a}{4r} - \frac{a^3}{4r^3} \right\}$$

SDIMI 2015 - Vancouver

Approach to Solving the IVP

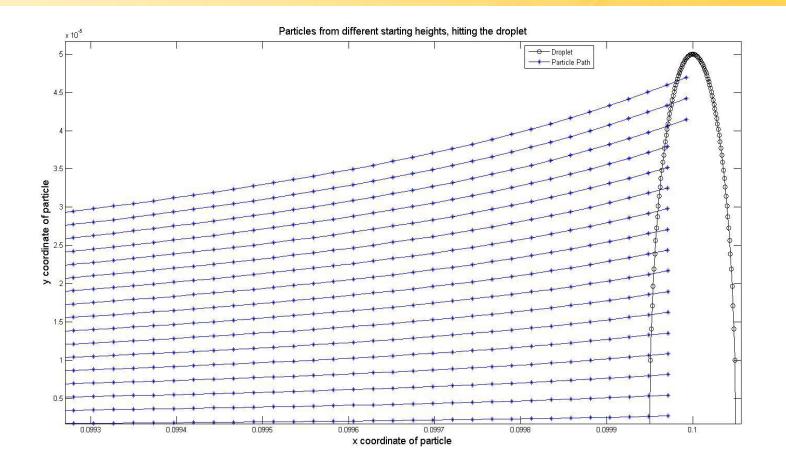
• The IVP reduces to a differential equation for the velocity of the particle,

 $\mathbf{m}\mathbf{u}' = 6\pi R_{p} \left(\mathbf{u}_{f} \left(\mathbf{r}(t), \theta(t) \right) - \mathbf{u} \right)$

together with the initial condition,

 $\mathbf{u}(0) = \mathbf{u}_{\mathbf{f}}$

 The implicit dependence on time of the differential equation requires numerical computation of u...

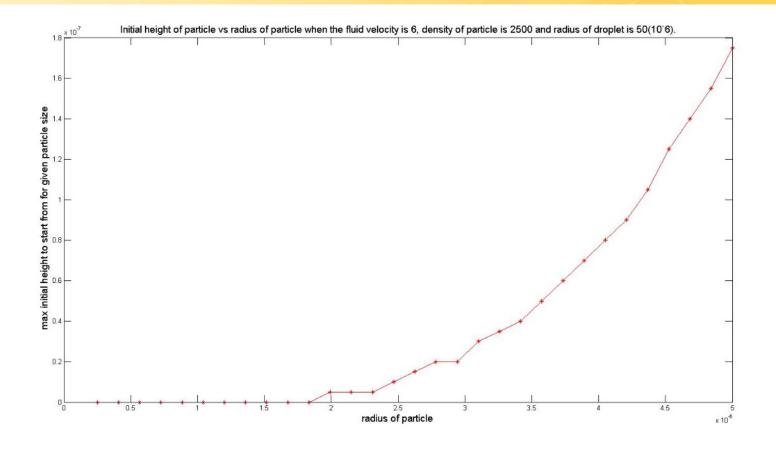


Algorithm for Solving the IVP

- Numerical Method for the solution to the IVP: Runge Kutta of order 2 (RK2)
- Algorithm (implemented in Matlab):
 - a. Given initial r and θ, compute fluid velocity u_f (r, θ);
 b. Compute new particle velocity u from IVP using RK2;
 c. Compute new position of particle based on new velocity u;
 d. Compute new (r, θ) based on the new position;
 e. Repeat steps (a-d) until particle collides with the droplet.

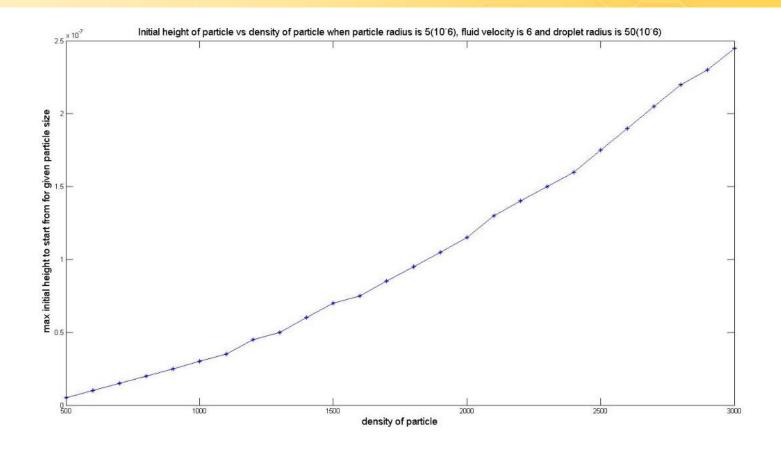
Particles Colliding with Droplet

SDIMI 2015 - Vancouver

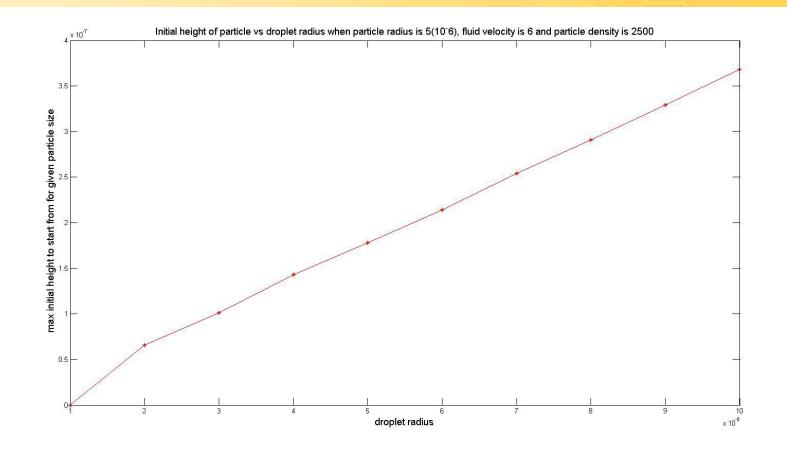


Discussion of preliminary results

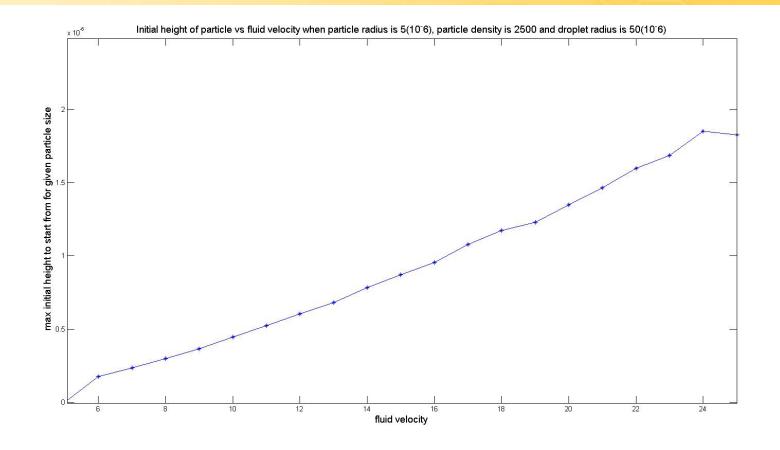
- Variation of 4 primary variables
- Calculation of maximum initial height to ensure collision
- Plot of maximum initial height vs. variable
- Determine dependencies


Max. initial height with respect to particle size

SDIMI 2015 - Vancouver



Max. initial height with respect to density


Max. initial height with respect to droplet size

SDIMI 2015 - Vancouver

Max. initial height with respect to fluid velocity

Future Work

- Use of higher order Runge-Kutta method to improve accuracy
- Improve accuracy of drag force calculation with Oseen's approximation
- Find a mathematical description of all parameters with respect to particle-droplet collisions
- Use information regarding dust concentration and water flow rates to determine the dust capture efficiency of a water spray system.
- Make a user friendly interface

SDIMI 2015 - Vancouver

Conclusion

- Successfully completed first step in modeling dust particle and water droplet interaction for dust control
- Model behaves as logically expected
- Next steps can be implemented

