

Sustainable drilling for oil and gas: challenging drilling environments demand new formulations of bentonite based drilling fluids

V. C. Kelessidis Technical University of Crete 3rd International Conference on Sustainable Development Indicators in the Mineral Industry 17-20 June, 2007, Milos

Summary of the presentation

- Introduction
- Energy Demand & Drilling environment
- Drilling fluids
- Demands for drilling techniques & drilling fluids
- Challenges for bentonite industry
- Summary / Conclusions

Energy demand will continuously increase

Where will this energy come from ?

Mainly Oil - Gas - Coal

5

Economides and Oligney "Twist" Forecast of World Energy Consumption

Where the new oil & gas will come from ?

Deep & Ultra-deep water !

'hydrocarbon potential is not considered adequate to give any optimism for the deeper waters providing substantial additions to the reserves of exploitable hydrocarbons'

Wharman, 1978. Transactions of the Royal Society of London.

How things change !

Deep Water, the Next Frontier

IMS: SECURING OCEAN ENERGY AND ECONOMIC VALUE FOR AMERICA 2004

Strong potential of subsurface ocean waters ! (deep > 300 m) Gulf and Deep Water Oil Production

MMS: SECURING OCEAN ENERGY AND ECONOMIC VALUE FOR AMERICA 2004

R.M. Slatt, Un. Oklahoma, 2001–02 AAPG Distinguished Lecture Series

Deepwater Discovered Reserves

Fleet from one operator

The Deepwater Fleet (4500+ ft. Water Depth)

But all come at a price !

- US \$ 10 50 million , single well
 for 300 1500 m water depth
- US \$ 3 9 million,
 - for onshore (TD ~5000 m)
 - or offshore shallow water (TD ~ 6000 m)
- 50% costs for Drilling / tripping
- 9.5% for Drilling Fluids (3rd largest)

Cost distribution for deep drilling

drilling fluids but many problems are drilling fluid related

BENCHMARKING DEEP DRILLING

Schlumberger Data and Consulting Services Pittsburgh, Pennsylvania

FINAL REPORT

Drilling fluids

- the 'blood' of the well
- cool & lubricate the bit
- transfer cuttings to surface
- apply hydrostatic pressure (safety)
- maintain stability of wellbore

INGREDIENTS

water oil (diesel or synthetic) bentonitepolymers many - many additives

South Africa ~ 5%

15

Drilling fluid costs

- 1990, total ~ 4.0 billion US \$ (1996)
- per well, deep wells, 2006, 500.000\$
- very difficult wells, reported savings of up to 1.0 million US \$

Drilling fluids base, pros & cons

- Synthetic based muds, ~ 825 \$ / ton
 - C_{14} - C_{24} , esters, ethers, poly-a-olefins
 - beneficial but costly
 - deep water, pressure margin very narrow
 - great chances for fracturing formations \rightarrow losses of very expensive fluids !
- Oil based muds, less expensive but environmental problems
- Water based muds, even less expensive

Incentive !

- Water based muds, reduce costs & protect environment
- significant ingredient, bentonite
- but at high & low temperatures, loss of
 - rheological properties
 - filtration properties
- Additives, particularly for HPHT wells

HPHT Wells

Brownlee, J.K., et al., 2005. SPE 97590

Challenges for drilling fluid industry

- Difficult well environment → Hollistic approach
- flexible drilling fluids
- different formulations at different depth intervals
- adjustable parameters
- new additives

challenges for bentonite industry \rightarrow find additives to expand operating range of water based fluids

Case histories

- 1. South China Sea, ~ 4.700 m, > $200^{\circ}C$, > 1000 bar, WBM, bentonite resin/lignite - glycol
- 2. Offshore Louisiana, high salinity, polyols + sulphonated asphalts & oxidized subbituminous coal
- 3. Onshore Mississippi, ~ 5.600 m, 140 $^{\circ}C$ blowout, WBM, bentonite, low weight co-polymer, synthetic interpolymer, modified lignite copolymer 21

Additives for bentonite fluids

- polymers
- lignite
- expand operating range
- in search for mechanism of operation

Representation of adsorption of cationic surfactants on bentonite particles (from Alemdar et al., 2000)

Our recent work - Greek lignites

- methodology for lignite 'activation'
- techniques for measuring performance
- excellent performance of most Greek lignites as HT additives
- stable slurries for
 - rheology and filtration control
 - maintaining original core permeability

Rheological control with lignites

25

Retention of core permeability

~ 100% recovery

26

Summary

- Demand for hydrocarbons will be on the rise
- > 1500 m water depth, > 6000 m wells
- high and low temperatures
- need for excellent performing fluids
- in search for flexible drilling fluids
- WB fluids less expensive & environmentally friendly
- bentonite additives can expand operating ranges
 THE CHALLENGE ? focused research and product development ²⁷

the challenge is there !